Partial least squares regression as an alternative to current regression methods used in ecology
نویسندگان
چکیده
منابع مشابه
Partial least squares regression as an alternative to current regression methods used in ecology
This paper briefly presents the aims, requirements and results of partial least squares regression analysis (PLSR), and its potential utility in ecological studies. This statistical technique is particularly well suited to analyzing a large array of related predictor variables (i.e. not truly independent), with a sample size not large enough compared to the number of independent variables, and ...
متن کاملAn Introduction to Partial Least Squares Regression
Partial least squares is a popular method for soft modelling in industrial applications. This paper introduces the basic concepts and illustrates them with a chemometric example. An appendix describes the experimental PLS procedure of SAS/STAT software.
متن کاملRobust Methods for Partial Least Squares Regression
Partial Least Squares Regression (PLSR) is a linear regression technique developed to deal with high-dimensional regressors and one or several response variables. In this paper we introduce robustified versions of the SIMPLS algorithm being the leading PLSR algorithm because of its speed and efficiency. Because SIMPLS is based on the empirical cross-covariance matrix between the response variab...
متن کاملEnsemble Methods and Partial Least Squares Regression
Recently, there has been an increased attention in the literature on the use of ensemble methods in multivariate regression and classification. These methods have been shown to have interesting properties both for regression and classification. In particular, they can improve the accuracy of unstable predictors. Ensemble methods have so far, been little studied in situations that are common for...
متن کاملPartial least squares methods: partial least squares correlation and partial least square regression.
Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Oikos
سال: 2009
ISSN: 0030-1299,1600-0706
DOI: 10.1111/j.1600-0706.2008.16881.x